NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Characterization of Regolith Volatile Transport and Storage Properties by The MECA MSP 2001 Lander PayloadThe diffusive and adsorptive properties of the Martian regolith influence the exchange of volatiles between the atmosphere and subsurface. Our quantitative knowledge of these properties is extremely poor -introducing substantial uncertainties in efforts to model long-term evolution of ground ice and diurnal, seasonal, and climatic cycles of CO2 and H20. This situation should significantly improve upon arrival of the 2001 Mars Surveyor Lander in 2002. In support of the Human Exploration and Development of Space (HEDS) enterprise, the 2001 mission will include a suite of instruments to characterize the nature of the Martian environment and assess whether it contains hazards that may threaten future human exploration. A major element of this effort is the Mars Environmental Compatibility Assessment (MECA) payload, which consists an optical microscopy system incorporating electrostatic, magnetic, and scratch-hardness materials testing palets, an atomic force microscope with imaging capabilities comparable to an SEM, a wet chemistry laboratory with four independent test cells, an electrometer on the robotic arm, material test patches, a camera also mounted on the arm, and a soil scoop for excavating down to about 50 cm into the soil. Although conceived to address the needs of HEDS, MECA payload is a sophisticated soil science laboratory that should provide a wealth of new data relevant to the volatile transport and storage properties of the regolith. Additional information os contained in the original.
Document ID
20000025383
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Clifford, S. M.
(Lunar and Planetary Inst. Houston, TX United States)
Marshall, J.
(Search for Extraterrestrial Intelligence Inst. Moffett Field, CA United States)
Date Acquired
August 19, 2013
Publication Date
September 1, 1999
Publication Information
Publication: Studies of Mineralogical and Textural Properties of Martian Soil: An Exobiological Perspective
Subject Category
Lunar And Planetary Science And Exploration
Meeting Information
Meeting: Lunar and Planetary Science
Location: Houston, TX
Country: United States
Start Date: March 15, 1999
End Date: March 19, 1999
Funding Number(s)
CONTRACT_GRANT: NCC2-926
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available