NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Global Pattern of Potential Evaporation Calculated from the Penman-Monteith Equation Using Satellite and Assimilated DataPotential evaporation (E(0)) has been found to be useful in many practical applications and in research for setting a reference level for actual evaporation. All previous estimates of regional or global E(0) are based upon empirical formulae using climatologic meteorologic measurements at isolated stations (i.e., point data). However, the Penman-Monteith equation provides a physically based approach for computing E(0), and by comparing 20 different methods of estimating E(0), Jensen et al. (1990) showed that the Penman-Monteith equation provides the most accurate estimate of monthly E(0) from well-watered grass or alfalfa. In the present study, monthly total E(0) for 24 months (January 1987 to December 1988) was calculated from the Penman-Monteith equation, with prescribed albedo of 0.23 and surface resistance of 70 s/m, which are considered to be representative of actively growing well-watered grass covering the ground. These calculations have been done using spatially representative data derived from satellite observations and data assimilation results. Satellite observations were used to obtain solar radiation, fractional cloud cover, air temperature, and vapor pressure, while four-dimensional data assimilation results were used to calculate the aerodynamic resistance. Meteorologic data derived from satellite observations were compared with the surface measurements to provide a measure of accuracy. The accuracy of the calculated E(0) values was assessed by comparing with lysimeter observations for evaporation from well-watered grass at 35 widely distributed locations, while recognizing that the period of present calculations was not concurrent with the lysimeter measurements and the spatial scales of these measurements and calculations are vastly different. These comparisons suggest that the error in the calculated E(0) values may not be exceeded, on average, 20% for any month or location, but are more likely to be about 15%. These uncertainties are difficult to quantify for mountainous areas or locations close to extensive water bodies. The difference between the calculated and observed E(0) is about 5% when all month and locations were considered. Errors are expected to be less than 15% for averages of E(0) over large areas or several months. Further comparisons with lysimeter observations could provide a better appraisal of the calculated values. Global pattern of E(0) was presented, together with zonal average values.
Document ID
20000037972
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Choudhury, Bhaskar J.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1997
Publication Information
Publication: Laboratory for Hydrospheric Processes Research Publications
Subject Category
Meteorology And Climatology
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available