NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Polarimetric Ku-Band Scatterometer for High Accuracy, Large Swath Global Wind Vector MeasurementsIn the past, wind measurements from space using fan-beam antennas, such as Seasat Scatterometer (SASS-1), ERS-1 &2, and NASA scatterometer (NSCAT), required up to six large stick-like antennas and suffered a nadir gap of up to 400 km. In the near future, a spinning pencil-beam scatterometer system is to be used for the SeaWinds scatterometer on QuikSCAT (QSCAT) and on ADEOS-2 (SeaWinds). This scatterometer, though offering wind measurements in the nadir region, still suffers from degraded performance in the nadir and outer swath. The purpose of this paper is to present an advanced polarimetric spinning pencil-beam scatterometer system, which can significantly improve the wind performance across the entire swath. The polarimetric scatterometer simultaneously measures co-polarized backscatter and the polarimetric correlation of co- and cross-polarized radar returns from the ocean surface. The advantage over the conventional scatterometer system is that, while the co-polarization radar returns are even function of the wind direction, the polarimetric correlation is an odd function of wind direction due to the reflection symmetry of the wind roughened surface. Therefore, this polarimetric scatterometer system can provide additional, equivalent measurements at azimuth angle 45degree away from the corresponding co-polarization measurements. The combined co-polarization and correlation measurements enable good wind performance across the whole swath to be obtained. In this paper, we will first present the theoretical formulation of all of the key components required for designing a polarimetric scatterometer. Then, we show that good wind performance can be achieved by a slight improvement in the signal-to-noise ratio of the current QSCAT/SeaWinds design. We then present the predicated wind performance using computer simulation based on a model function for the co-polarized backscatter obtained from actual spaceborne scatterometer data and an estimated model function for the polarimetric correlation based on the asymmetry observed in backscatter data. Finally, we will show that, aside from ocean applications, this polarimetric scatterometer can also be used for ice and land applications.
Document ID
20000073290
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other
Authors
Tsai, Wu-Yang
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Nghiem, Son V.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Huddleston, James
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Spencer, Michael
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Stiles, Bryan
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
West, Richard
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Meteorology And Climatology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available