NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Does Warming a Lysozyme Solution Cook Ones Data?Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.
Document ID
20000074270
Acquisition Source
Marshall Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Pusey, Marc
(NASA Marshall Space Flight Center Huntsville, AL United States)
Burke, Michael
(Alabama Univ. Huntsville, AL United States)
Judge, Russell
(Alabama Univ. Huntsville, AL United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Solid-State Physics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available