NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and FlutterAs a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data sets from the first two tests have been chosen for Test Cases for computational comparisons concentrating on static conditions and cases with harmonically oscillating control surfaces. Several flutter Test Cases from both tests have also been included. Some aerodynamic comparisons with the BACT data have been made using computational fluid dynamics codes at the Navier-Stokes level (and in the accompanying chapter SC). Some mechanical and active control studies have been presented. In this report several Test Cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flow effects. Cases for static angles of attack, static trailing-edge and upper-surface spoiler deflections are included for a range of conditions near those for the oscillation cases. Cases for trailing-edge control and upper-surface spoiler oscillations for a range of Mach numbers, angle of attack, and static control deflections are included. Cases for all three types of flutter instability are selected. In addition some cases are included for dynamic response measurements during forced oscillations of the controls on the flexible mount. An overview of the model and tests is given, and the standard formulary for these data is listed. Some sample data and sample results of calculations are presented. Only the static pressures and the first harmonic real and imaginary parts of the pressures are included in the data for the Test Cases, but digitized time histories have been archived. The data for the Test Cases are also available as separate electronic files.
Document ID
20010009847
Acquisition Source
Langley Research Center
Document Type
Other
Authors
Bennett, Robert M.
(NASA Langley Research Center Hampton, VA United States)
Scott, Robert C.
(NASA Langley Research Center Hampton, VA United States)
Wieseman, Carol D.
(NASA Langley Research Center Hampton, VA United States)
Date Acquired
August 20, 2013
Publication Date
October 1, 2000
Publication Information
Publication: Verification and Validation Data for Computational Unsteady Aerodynamics
Subject Category
Aircraft Stability And Control
Distribution Limits
Public
Copyright
Other
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available