NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Calculating Free Energies Using Scaled-Force Molecular Dynamics AlgorithmOne common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous mixing. A similar difficulty may be encountered in any method relying on global modifications of phase space.
Document ID
20010022632
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Darve, Eric
(Stanford Univ. Stanford, CA United States)
Wilson, Micahel A.
(NASA Ames Research Center Moffett Field, CA United States)
Pohorille, Andrew
(NASA Ames Research Center Moffett Field, CA United States)
Date Acquired
August 20, 2013
Publication Date
December 1, 2000
Publication Information
Publication: Annual Research Briefs - 2000: Center for Turbulence Research
Subject Category
Atomic And Molecular Physics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available