NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Numerical Simulations of Precipitation Processes, Microphysics, and Microwave Radiative Properties of flood Producing Storms in Mediterranean & Adriatic BasinsA comprehensive understanding of the meteorological and microphysical nature of Mediterranean storms requires a combination of in situ data analysis, radar data analysis, and satellite data analysis, effectively integrated with numerical modeling studies at various scales. An important aspect of understanding microphysical controls of severe storms, is first understanding the meteorological controls under which a storm has evolved, and then using that information to help characterize the dominant microphysical processes. For hazardous Mediterranean storms, highlighted by the October 5-6, 1998 Friuli flood event in northern Italy, a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution. This involves intense convective development, Sratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that effect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. This talk overviews the microphysical elements of a severe Mediterranean storm in such a context, investigated with the aid of TRMM satellite and other remote sensing measurements, but guided by a nonhydrostatic mesoscale model simulation of the Friuli flood event. The data analysis for this paper was conducted by my research groups at the Global Hydrology and Climate Center in Huntsville, AL and Florida State University in Tallahassee, and in collaboration with Dr. Alberto Mugnai's research group at the Institute of Atmospheric Physics in Rome. The numerical modeling was conducted by Professor Oreg Tripoli and Ms. Giulia Panegrossi at the University of Wisconsin in Madison, using Professor Tripoli's nonhydrostatic modeling system (NMS). This is a scalable, fully nested mesoscale model capable of resolving nonhydrostatic circulations from regional scale down to cloud scale and below.
Document ID
20010028698
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Smith, Eric A.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Einaudi, Franco
Date Acquired
August 20, 2013
Publication Date
January 1, 2001
Subject Category
Numerical Analysis
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available