NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experiments and Model Development for the Investigation of Sooting and Radiation Effects in Microgravity Droplet CombustionToday, despite efforts to develop and utilize natural gas and renewable energy sources, nearly 97% of the energy used for transportation is derived from combustion of liquid fuels, principally derived from petroleum. While society continues to rely on liquid petroleum-based fuels as a major energy source in spite of their finite supply, it is of paramount importance to maximize the efficiency and minimize the environmental impact of the devices that burn these fuels. The development of improved energy conversion systems, having higher efficiencies and lower emissions, is central to meeting both local and regional air quality standards. This development requires improvements in computational design tools for applied energy conversion systems, which in turn requires more robust sub-model components for combustion chemistry, transport, energy transport (including radiation), and pollutant emissions (soot formation and burnout). The study of isolated droplet burning as a unidimensional, time dependent model diffusion flame system facilitates extensions of these mechanisms to include fuel molecular sizes and pollutants typical of conventional and alternative liquid fuels used in the transportation sector. Because of the simplified geometry, sub-model components from the most detailed to those reduced to sizes compatible for use in multi-dimensional, time dependent applied models can be developed, compared and validated against experimental diffusion flame processes, and tested against one another. Based on observations in microgravity experiments on droplet combustion, it appears that the formation and lingering presence of soot within the fuel-rich region of isolated droplets can modify the burning rate, flame structure and extinction, soot aerosol properties, and the effective thermophysical properties. These observations led to the belief that perhaps one of the most important outstanding contributions of microgravity droplet combustion is the observation that in the absence of asymmetrical forced and natural convection, a soot shell is formed between the droplet surface and the flame, exerting an influence on the droplet combustion response far greater than previously recognized. The effects of soot on droplet burning parameters, including burning rate, soot shell dynamics, flame structure, and extinction phenomena provide significant testing parameters for studying the structure and coupling of soot models with other sub-model components.
Document ID
20010074055
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Choi, Mun Young
(Drexel Univ. Philadelphia, PA United States)
Yozgatligil, Ahmet
(Drexel Univ. Philadelphia, PA United States)
Dryer, Frederick L.
(Princeton Univ. NJ United States)
Kazakov, Andrei
(Princeton Univ. NJ United States)
Dobashi, Ritsu
(Tokyo Univ. Japan)
Date Acquired
August 20, 2013
Publication Date
May 1, 2001
Publication Information
Publication: Sixth International Microgravity Combustion Workshop
Subject Category
Inorganic, Organic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NCC3-822
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available