NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced MaterialsCombustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between reactants occurs within each particle, and mixtures of elemental powders, where interparticle contacts are important for the reaction; and 3) Mechanistic Studies of Phase Separation in Combustion of Thermite Systems. Studies are devoted to experiments on thermite systems (metal oxide-reducing metal) where phase separation processes occur to produce alloys with tailored compositions and properties. The separation may be either gravity-driven or due to surface forces, and systematic studies to elucidate the true mechanism are being conducted. The knowledge obtained will be used to find the most promising ways of controlling the microstructure and properties of combustion-synthesized materials. Low-gravity experiments are essential to create idealized an environment for insights into the physics and chemistry of advanced material synthesis processes.
Document ID
20010074063
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Varma, A.
(Notre Dame Univ. IN United States)
Lau, C.
(Notre Dame Univ. IN United States)
Mukasyan, A. S.
(Notre Dame Univ. IN United States)
Date Acquired
August 20, 2013
Publication Date
May 1, 2001
Publication Information
Publication: Sixth International Microgravity Combustion Workshop
Subject Category
Inorganic, Organic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NAG3-2213
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available