NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Flame Synthesis of Single- and Multi-Walled Carbon Nanotubes and NanofibersMetal-catalyzed carbon nanotubes are highly sought for a diverse range of applications that include nanoelectronics, battery electrode material, catalysis, hydrogen storage media and reinforcing agents in polymer composites. These latter applications will require vast quantities of nanotubes at competitive prices to be economically feasible. Moreover, reinforcing applications may not require ultrahigh purity nanotubes. Indeed, functionalization of nanotubes to facilitate interfacial bonding within composites will naturally introduce defects into the tube walls, lessening their tensile strength. Current methods of aerosol synthesis of carbon nanotubes include laser ablation of composite targets of carbon and catalyst metal within high temperature furnaces and decomposition of a organometallics in hydrocarbons mixtures within a tube furnace. Common to each approach is the generation of particles in the presence of the reactive hydrocarbon species at elevated temperatures. In the laser-ablation approach, the situation is even more dynamic in that particles and nanotubes are borne during the transient cooling phase of the laser-induced plasma for which the temperature far exceeds that of the surrounding hot gases within the furnace process tube. A shared limitation is that more efficient methods of nanoparticle synthesis are not readily incorporated into these approaches. In contrast, combustion can quite naturally create nanomaterials such as carbon black. Flame synthesis is well known for its commercial scalability and energy efficiency. However, flames do present a complex chemical environment with steep gradients in temperature and species concentrations. Moreover, reaction times are limited within buoyant driven flows to tens of milliseconds. Therein microgravity can greatly lessen temperature and spatial gradients while allowing independent control of flame residence times. In preparation for defining the microgravity experiments, the work presented here focuses on the effect of catalyst particle size and reactant gas in 1g.
Document ID
20010074069
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
VanderWal, R. L.
(National Center for Microgravity Research on Fluids and Combustion Cleveland, OH United States)
Ticich, Thomas M.
(Centenary Coll. of Louisiana Shreveport, LA United States)
Date Acquired
August 20, 2013
Publication Date
May 1, 2001
Publication Information
Publication: Sixth International Microgravity Combustion Workshop
Subject Category
Inorganic, Organic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NAC3-544
OTHER: NRA 97-HEDs-01
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available