NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
EIT Crinkles as Evidence for the Breakout Model of Solar EruptionsWe present observations of two homologous flares in NOAA active region 8210 occurring on 1998 May 1 and May 2, using EUV data from the Extreme Ultraviolet Radiation Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO), high-resolution and high-time cadence images from the soft X-ray telescope (SXT) on Yohkoh, images or fluxes from the hard X-ray telescope (HXT) on Yohkoh and the BATSE experiment on the Compton Gamma Ray Observatory (CGRO), and Ca xix soft X-ray spectra from the Bragg crystal spectrometer (BCS) on Yohkoh. Magnetograms indicate that the flares occurred in a complex magnetic topology, consisting of an emerging flux region (EFR) sandwiched between a sunspot to the west and a coronal hole to the east. In an earlier study we found that in EIT images, both flaring episodes showed the formation of a crinkle-like pattern of emission ("EIT crinkles") occurring in the coronal hole vicinity, well away from a central "core field" area near the EFR-sunspot boundary. With our expanded data set, here we find that most of the energetic activity occurs in the core region in both events, with some portions of the core brightening shortly after the onset of the EIT crinkles, and other regions of the core brightening several minutes later, coincident with a burst of hard X-rays: there are no obvious core brightenings prior to the onset of the EIT crinkles. These timings are consistent with the "breakout model" of solar eruptions, whereby the emerging flux is initially constrained by a system of overlying magnetic field lines, and is able to erupt only after an opening develops in the overlying fields as a consequence of magnetic reconnection at a magnetic null point. In our case, the EIT crinkles would be a signature of this pre-impulsive-phase magnetic reconnection, and brightening of the core only occurs after the core fields begin to escape through the newly-created opening in the overlying fields. Morphology in soft X-ray images and properties in hard X-rays differ between the two events, with complexities that preclude a simple determination of the dynamics in the core at the times of eruption. From the BCS spectra, we find that the core region expends energy at a rate of approx. 10(exp 26) erg per second during the time of the growth of the EIT crinkles; this rate is an upper limit to energy expended in the reconnections opening the overlying fields. Energy losses occur at an order-of-magnitude higher rate near the time of the peak of the events. There is little evidence of asymmetry in the spectra, consistent with the majority of the mass flows occurring normal to the line-of-sight. Both events have similar electron temperature dependencies on time.
Document ID
20010075143
Acquisition Source
Marshall Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Sterling, Alphonse C.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Moore, R. L.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Whitaker, Ann F.
Date Acquired
August 20, 2013
Publication Date
January 21, 2001
Subject Category
Solar Physics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available