NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Structural and Molecular Approach for the Study BiomarkersInvestigation of the nucleation and growth of crystals in both abiotic and biotic systems is critical to seemingly diverse disciplines of geology, biology, environmental science, and astrobiology. While there are abundant studies devoted to the determination of the structure and composition of inorganic crystals, as well as to the development of thermodynamic and kinetic models, it is only recently that research efforts have been directed towards understanding mineralization in biological systems (i.e., biomineralization). Biomineralization refers to the processes by which living organisms form inorganic solids. Studies of the processes of biomineralization under low temperature aqueous conditions have focused primarily on magnetite forming bacteria and shell forming marine organisms. Many of the biological building materials consist of inorganic minerals (calcium carbonate, calcium phosphate, silica or iron oxide) intricately combined with organic polymers (like proteins). More recently, efforts have been undertaken to explore the nature of biological activities in ancient rocks. In the absence of well-preserved microorganisms or genetic material required for the polmerase chain reaction (PCR) method in molecular phylogenetic studies, using biominerals as biomarkers offers an alternative approach for the recognition of biogenic activity in both terrestrial and extraterrestrial environments. The primary driving force in biomineralization is the interaction between organic and inorganic phases. Thus, the investigation of the ultrastructure and the nature of reactions at the molecular level occurring at the interface between inorganic and organic phases is essential to understanding the processes leading to the nucleation and growth of crystals. It is recognized that crystal surfaces can serve as the substrate for the organization of organic molecules that lead to the formation of polymers and other complex organic molecules, and in discussions of the origins of life, is referred to as organic synthesis on mineral surfaces. Furthermore, it is suggested that the interaction between mineral surfaces and simple organic molecules resulted in the formation of amino acids, RNA, and perhaps other more complex molecules such as proteins. On the other hand, in natural systems, it is recognized that functional groups on cell walls or membranes of microorganisms serve as sites of nucleation and crystallization. The precise replication of biominerals with controlled structure, morphology, size and texture is not confined to higher organisms as it also occurs in primitive prokaryotic cells such as magnetotactic bacteria and cyanobacteria. This suggests that the principal strategies of biomineralization were established early on in the evolutionary history of organisms. It is critical, therefore, to search for common mechanisms within diverse biological systems. One such common factor is the capability for organization and self-assembly. Organic macromolecules such as proteins and lipids can aggregate and polymerize forming membranes or extracellular matrix. At the organic-inorganic interface, several factors such as lattice geometry, polarity, stereochemistry and topography may act in concert to control nucleation and growth of crystals. Although several models have been proposed that discuss the significance of these factors for biomineralization, no comprehensive experimental data are available. In contrast to crystallization in exclusively inorganic systems, the kinetics of reaction and structural relationships between organic and inorganic phases in biominerals or biomimetic material is poorly understood. For example, it is not clear if the concept of epitactic growth (geometrical matching of unit cells at the interface of a secondary crystal growing on a primary crystal) applies to organic-inorganic systems. In contrast to inorganic templates that often have a smooth and rigid surface that promotes epitactic growth, biological substrates are usually rough and result in a large degree of mismatch. It is apparent that factors controlling the reaction at the crystal-matrix interface are strongly dependent upon the nature of the substrate. Therefore, characterization of the assembled organic surface and surface structure of the inorganic phase is crucial to understanding the processes of biomineralization. The focus of our research is the investigation of the processes leading to the nucleation and growth of crystals on both natural and synthetic systems through an interdisciplinary approach that integrates molecular biology, morphology and mineralogy using advanced preparation and analytical techniques. We have studied run-products, particularly magnetite, siderite and other carbonates, that resulted from extracellular biomineralization by extremophiles isolated from a variety of extreme environments ranging from permafrost to hydrothermal vent systems. The results of this study are critical to recognizing biomarkers in terrestrial and extraterrestrial environments.
Document ID
20020002096
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Thomas-Keprta, Kathie
(NASA Johnson Space Center Houston, TX United States)
Vali, Hojatollah
(McGill Univ. Montreal, Quebec Canada)
Sears, S. Kelly
(McGill Univ. Montreal, Quebec Canada)
Roh, Yul
(Oak Ridge National Lab. TN United States)
Date Acquired
August 20, 2013
Publication Date
April 1, 2001
Publication Information
Publication: General Meeting of the NASA Astrobiology Insititute
Subject Category
Exobiology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available