NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Organization of P, S, and Fe Inclusions in a Freshwater MagnetococcusMagnetotactic bacteria are a heterogeneous group of motile, mainly aquatic procaryotes that align and swim along geomagnetic field lines. They are of interest to astrobiologists because of the magnetite crystals found in the Mars meteorite ALH84001 which share many characteristics with the magnetite produced intracellularly by magnetotactic bacteria. These bacteria are diverse morphologically, physiologically and phylogenetically, sharing a few key characteristics: 1) the presence of intracellular membrane-bound magnetic crystals (magnetosomes), usually but not always arranged in chains; 2) motility by means of flagella; and 3) microaerophillic or anaerobic physiology. The bilophotrichous (having two flagella bundles) magnetotactic cocci (MC) are ubiquitous in aquatic habitats but have proven extremely difficult to cultivate. Because only several marine strains have been isolated and grown in axenic culture, little is known about the physiology and the biogeochemical roles of the MC. We studied the composition and distribution of intracellular structures in an uncultured MC, designated ARB-1. To do this, a combination of light microscopy, environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used. Cells of ARB-1 were separated from sediments collected from Baldwin Lake (Los Angeles Arboretum, Arcadia, CA). They are large spherical to oblate spheroidal Gram-negative cells, ranging from 1 to 4 micrometers along the maximum dimension, which is perpendicular to the direction of swimming. Cells have two large phosphorus-containing inclusions that comprise a large percentage of the cell volume. Many smaller sulfur inclusions are located at the convex end of the cell. Most of the cellular Fe is present in the magnetosomes. These may be arranged as a clump at the concave end of the cell, near the two flagella bundles, or as chains, or as both a clump and chains. The magnetosomes were identified as magnetite (Fe3O4) by selected area electron diffraction (SAED) and high resolution TEM. We saw a trend between cell size and organization of the magnetosomes. Smaller, more spherical cells were more likely to have chains than were larger, more oblate cells. This may indicate different populations of cells, or it may be attributed to variations in cell growth cycle. The size distribution (length) of magnetosomes in chains was similar to that of magnetosomes in clusters, except that there was a larger size range for clustered magnetosomes. Magnetosomes from ARB-1 cells average 82 nm in length. If plotted on a graph of length as a function of aspect ratio, they fall within the single domain region of the plot. If compared with the size distributions of magnetite from ALH84001 and magnetosomes from the cultured magnetotactic vibrio MV-1, the magnetites produced by ARB-1 cells are, on average, larger and have a wider range of aspect ratio. ARB-1 cells have a specific organization of the P, S, and Fe inclusions. The P inclusions always occupy the majority of the cell volume and separate the S inclusions from the disorganized clumps of magnetosomes and the flagella bundles. The P inclusions may contain polyphosphate, which could play several roles in motility, adaptation to stress, growth and division, buoyancy, and energy. The S inclusions might be a way to store S, a potential energy source, when the cells move from sulfide to oxygen zones. The consistency of P, S, and Fe organization in ARB-1 cells suggests that these inclusions have some specific and interactive functions.
Document ID
20020002111
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
Authors
Cox, Lea
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Popa Radu
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Douglas, Susanne
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Belz, Andrea
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Nealson, Kenneth H.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 20, 2013
Publication Date
April 1, 2001
Publication Information
Publication: General Meeting of the NASA Astrobiology Insititute
Subject Category
Exobiology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available