NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A New Theory of Nucleate Pool Boiling in Arbitrary GravityHeat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different gravity levels, with a good agreement with experimental evidence. The other problem bears upon equilibrium shapes of a detached bubble near a heated surface in exceedingly low gravity. In low gravity or in weightlessness, the bubble can remain in the close vicinity of the surface for a long time, and its shape is greatly affected by the Marangoni effect due to both temperature and possible surfactant concentration being nonuniform along the interface. The bubble performs at these conditions like a heat pipe, with evaporation at the bubble lower boundary and condensation at its upper boundary, and ultimately ensures a substantial increase in heat removal as compared with that in normal gravity. Some other problems relevant to nucleate pool and forced convection boiling heat transfer are also discussed.
Document ID
20020027280
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Buyevich, Y. A.
(NASA Ames Research Center Moffett Field, CA United States)
Webbon, Bruce W.
(NASA Ames Research Center Moffett Field, CA United States)
Date Acquired
August 20, 2013
Publication Date
January 1, 1995
Subject Category
Fluid Mechanics And Thermodynamics
Meeting Information
Meeting: 2nd European Thermal-Sciences Conference
Location: Rome
Country: Italy
Start Date: May 29, 1996
End Date: May 31, 1996
Sponsors: International Telecommunication Union
Funding Number(s)
PROJECT: RTOP 199-61-62
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available