NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Novel Multiplexing Technique for Detector and Mixer ArraysFuture submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature electronics. This can significantly reduce the complexity of the readout circuits.
Document ID
20020038972
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
Authors
Karasik, Boris S.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
McGrath, William R.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 20, 2013
Publication Date
December 1, 2001
Publication Information
Publication: Proceedings of the Twenlfth International Symposium on Space Terahertz Technology
Subject Category
Electronics And Electrical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available