NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Orbit Determination Support for the Microwave Anisotropy Probe (MAP)The Microwave Anisotropy Probe (MAP) is a Medium Class Explorers (MIDEX) mission produced in partnership between Goddard Space Flight Center (GSFC) and Princeton University. The main science objective of the MAP mission is to produce an accurate full-sky map of the cosmic microwave background temperature fluctuations anisotropy. MAP was launched from the Cape Canaveral Air Force Station Complex 17 aboard a Delta II 7425-10 expendable launch vehicle at exactly 19:46:46.183 UTC on June 30, 2001. The spacecraft received a nominal direct insertion by the Delta into a 185 km circular orbit. MAP was then maneuvered into a sequence of phasing loops designed to set up a lunar swingby (gravity-assisted acceleration) of the spacecraft onto a transfer trajectory to a Lissajous orbit about the Earth-Sun L2 point. The mission duration is approximately 27 months with 3 to 4 months of transfer time to the final mission orbit about L2. The MAP transfer orbit consisted of 3.5 phasing loops: the first loop has a 7-day period, the second and third loops have a 9-day period, and the last half loop has a 4-day period as illustrated in Figure 1, which also indicates the placement of maneuvers. A Pfinal correction maneuver was performed 18 hours after the last perigee to more closely achieve the targeted lissajous orbit. The lunar encounter or swingby took place approximately 30 days after launch. After the lunar encounter, the spacecraft will cruise for approximately 120 days before it arrives at L2. A Mid-Course Correction (MCC) maneuver was executed seven days after the swingby to further refine the trajectory. Once the MAP satellite is injected into the L2 Lissajous orbit, it will perform occasional stationkeeping maneuvers to maintain the Lissajous orbit for a minimum of two years (and a goal of four years). Because of its complex orbital characteristics, the mission provided a unique challenge to orbit determination (OD) support in many orbital regimes. Extensive trajectory error covariance analysis was performed to predict ephemeris accuracy for the OD process using a Bayesian least-squares technique. The orbit determination error analysis is essential for maneuver planning and maneuver recovery study. Several tracking scenarios were investigated for each phase of the mission. This paper provides a summary of the premission trajectory covariance error analysis, as well as actual real-time OD results. The use and impact of the various tracking stations, systems, and measurements will be discussed. Details of the operational OD support and the inferred OD accuracy will be presented, and the results will be compared to the premission covariance analysis, In addition, there will be a discussion of the challenges presented to OD support including delta-Vs at apogee as well as perigee, and effects due to spacecraft attitude mode, in light of their implications to the OD accuracy and covariance analysis.
Document ID
20020061295
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Truong, Son H.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Cuevas, Osvaldo O.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Slojkowski, Steven
(Computer Sciences Corp. Lanham, MD United States)
Bauer, Frank H.
Date Acquired
August 20, 2013
Publication Date
January 1, 2002
Subject Category
Space Radiation
Meeting Information
Meeting: AIAA Monterey Conference
Location: Monterey, CA
Country: United States
Start Date: August 1, 2002
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available