NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing PropulsionThe performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.
Document ID
20020073109
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Riggins, David W.
(Missouri Univ. Rolla, MO United States)
Date Acquired
August 20, 2013
Publication Date
April 1, 2002
Publication Information
Publication: 26th JANNAF Airbreathing Propulsion Subcommittee Meeting
Volume: 1
Subject Category
Aircraft Propulsion And Power
Funding Number(s)
CONTRACT_GRANT: NAG1-01122
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available