NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Interseasonal Variations in the Middle Atmosphere Forced by Gravity WavesIn our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations of the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric meridional circulation. A distinct meridional oscillation (MO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MO through momentum deposition of GW's propagating in the north/south direction. This process is inherently non-linear, of third (odd) order, which enables the oscillation. Since the meridional winds are relatively small compared to the zonal winds, the vertical wavelength required to maintain the MO is also smaller, i.e., only about 10 km instead of the 30 km for the QBO. The corresponding viscous stress is then larger, and the period of the MO is thus short compared with that of the QBO, i.e., only about 3 to 4 months. Depending on the strength of the GW forcing, the computed amplitudes of the meridional wind oscillation are typically 5 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D and 3D reveal that the MO at low latitudes is modulated by the QBO and in turn can influence it to produce a hemispherically asymmetric component. The annual circulation from the summer to the winter hemisphere is likely to play an important role.
Document ID
20020073221
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Mayr, H. G.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Mengel, J. G.
(Science Systems and Applications, Inc. Lanham, MD United States)
Drob, D. P.
(Naval Research Lab. Washington, DC United States)
Porter, H. S.
(Furman Univ. Greenville, SC United States)
Bhartia, P. K.
Date Acquired
August 20, 2013
Publication Date
January 1, 2002
Subject Category
Environment Pollution
Meeting Information
Meeting: 2002 Spring AGU
Location: Washington, DC
Country: United States
Start Date: May 28, 2002
End Date: May 31, 2002
Sponsors: American Geophysical Union
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available