NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Ice Cloud Formation and Dehydration in the Tropical Tropopause LayerStratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.
Document ID
20030000464
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Jensen, Eric
(NASA Ames Research Center Moffett Field, CA United States)
Gore, Warren J.
Date Acquired
August 21, 2013
Publication Date
January 1, 2002
Subject Category
Geophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available