NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution PhaseLysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it will be oriented to some degree in a flowing boundary layer, even at the low flow velocities measured about macromolecule crystals. Flow-driven effects resulting in misorientation upon addition to and incorporation into the crystal need only be a small fraction of a percentage to significantly affect the resulting crystal. One Earth, concentration gradient driven flow will maintain a high interfacial concentration, i.e., a high level (essentially that of the bulk solution) of solute association at the interface and higher growth rate. Higher growth rates mean an increased probability that misaligned growth units are trapped by subsequent growth layers before they can be desorbed and try again, or that the desorbing species will be smaller than the adsorbing species. In microgravity the extended diffusive boundary layer will lower the interfacial concentration. This results in a net dissociation of aggregated species that diffuse in from the bulk solution, i.e., smaller associated species, which are more likely able to make multiple attempts to correctly bind, yielding higher quality crystals.
Document ID
20030005595
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Pusey, Marc L.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Forsythe, Elizabeth
(NASA Marshall Space Flight Center Huntsville, AL United States)
Sumida, John
(NASA Marshall Space Flight Center Huntsville, AL United States)
Maxwell, Daniel
(NASA Marshall Space Flight Center Huntsville, AL United States)
Gorti, Sridhar
(NASA Marshall Space Flight Center Huntsville, AL United States)
Date Acquired
August 21, 2013
Publication Date
November 1, 2002
Publication Information
Publication: Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6
Volume: 2
Subject Category
Solid-State Physics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available