NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Kinetics of Organic Transformations Under Mild Aqueous Conditions: Implications for the Origin of Life and Its MetabolismThe rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction half-life at 50 C, and to reveal the effect of functional groups on reactivity. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable (i. e. acetate decarboxylation half-life was l0(exp 18) years at 50 C); whereas, organic substances containing two oxygenated groups in which one group was a beta-positioned carbonyl group were the most reactive (i. e. acetoacetate decarboxylation half-life was l0(exp-2) years at 50 C). Of all functional groups the beta-positioned carbonyl group (aldehyde or ketone) was the strongest activating group, giving rates of reaction that were up to 10(exp 24)-times faster than rates of similar molecules lacking the beta-carbonyl group. From this knowledge of organic reactivity and the inherent constraints of autocatalytic processes, we concluded that an origins-of-life process based on autocatalytic transformation of C,H,O-substrates was constrained to using the most reactive organic molecules that contain alpha- or beta-carbonyl groups, since small autocatalytic domains of plausible catalytic power that used less reactive substrates could not carry out chemical transformations fast enough to prevent catastrophic efflux (escape) of reaction intermediates. Knowledge of the kinetics of organic transformations is useful, not only in constraining the chemistry of the earliest autocatalytic process related to the origin of life, but also in establishing the relative reactivity of organic molecules on the early Earth and other planets that may or may not be related to the origin of life.
Document ID
20030052315
Acquisition Source
Ames Research Center
Document Type
Preprint (Draft being sent to journal)
Authors
Weber, Arthur L.
(Search for Extraterrestrial Intelligence Inst. Moffett Field, CA, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Subject Category
Inorganic, Organic And Physical Chemistry
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available