NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Science Rationale for Jupiter Entry Probe as Part of JIMOA Jupiter atmospheric entry probe as part of JIMO is a cost effective way to address fundamental science questions identified in the National Research Council Solar System Exploration Decadal Survey (SSEDS): New Frontiers in the Solar System, An Integrated Ex- ploration Strategy. Compared to either the cost of an entirely separate Jupiter mission, or the cost of JIMO itself, inclusion of such a probe on JIMO would be cost advantageous. The probe itself could be relatively simple, and could build on the Galileo Probe heritage. The SSEDS specifically identified the distribution of water across the Solar System as a Key Scientific Question. Correspondingly, knowing the water abun dance on Jupiter is fundamental to understanding almost every aspect of the evolution of the early solar nebula. The Galileo Probe obtained the abundance of several key elements in Jupiter's atmosphere, which data have already caused major rethinking of theories of how Jupiter formed and how the early solar nebula evolved. However, because of a combination of circumstances, the global abundance of the key element oxygen, in the form of water, was not obtained. Without knowledge of the jovian water abundance, further progress in understanding Solar System evolution and planet formation will be greatly inhibited. Therefore, quantifying jovian water abundance should be a goal of the very next mission to the jovian system. Such a measurement would be impossible via remote sensing from the JIMO orbiter because of the large distances the JIMO orbiter maintains from Jupiter. A Jupiter atmospheric entry probe as part of JIMO could achieve the fundamental water measurement. In order that a probe avoid repeating the Galileo probe's experience of failing to obtain the jovian water abundance, the probe should go deep, to at least 100 bars pressure. Probes to 100 bars have been accomplished many times in descending to the surface of Venus, and at 100 bars the temperature of the jovian atmosphere is 60-70 K less than the surface temperature of Venus.
Document ID
20030066100
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Young, R. E.
(NASA Ames Research Center Moffett Field, CA, United States)
Spilker, T. R.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available