NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Nickel(111)/Alkaline Electrolyte InterfaceThe electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.
Document ID
20040070728
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Wang, Kuilong
(Case Western Reserve Univ. Cleveland, OH, United States)
Chottiner, G. S.
(Case Western Reserve Univ. Cleveland, OH, United States)
Scherson, D. A.
(Case Western Reserve Univ. Cleveland, OH, United States)
Reid, Margaret A.
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 1991
Publication Information
Publication: Space Electrochemical Research and Technology: Abstracts
Subject Category
Inorganic, Organic And Physical Chemistry
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available