NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Winds, Water Budgets and Stable Isotopes in Tropical Cyclones using TRMM and QUICKSCATWater vapor is the most abundant greenhouse gas in the atmosphere. Changes in its concentration and distribution are controlled by the hydrologic cycle. Because of its capacity to absorb and emit long wave radiation, release latent heat during condensation in storms and reflect short wave radiation when clouds form it has a major impact on Global climate change. The stable isotope ratios of water are H20 H2l6O and H0 H2l6O. These ratios change whenever water undergoes a phase change. They also change in both rain and water vapor whenever an air parcel is exposed to rain. In addition the relative changes in the two ratios differ as a &nction of the relative humidity. In short, the stable isotope ratios in water vapor in the atmosphere contain an integrated history of the processes affecting the concentration and distribution of water vapor in the atmosphere. Therefore the measurement and interpretation of changes in these stable isotope ratios are a powerful tool matched by no other method in tracing the transport history of water in the atmosphere. Our initial studies under this grant focused on the changes of the stable isotope ratios of precipitation and water vapor in tropical cyclones. The changes in time and space were found to be very large and to trace the transport of water in the storms reflecting changes in basic structural features. Because the stable isotope ratios of rains from tropical cyclones are so low flooding associated with land falling tropical cyclones introduces a negative isotopic spike into the coastal surface waters. In addition the stable isotope ratios of water vapor in the vicinity of tropical cyclones is anomalously low. This suggests that carbonate shelled organisms such as ostracoda living in coastal waters have the potential to record the isotopic spike and thereby provide a long term record of tropical storm activity in sediment cores containing fossil shells. Likewise, tree rings in coastal environments offer a similar potential. We have analyzed the oxygen isotopic composition of ostrcoda shells formed in the floodwaters of Tropical Storm Allison (2001) and discovered the negative isotopic 1 16 spike. Because we had learned that storm activity has a major impact on the stable isotope ratios of water vapor in the tropics and sub-tropics we decided to analyze the isotopic compositions of water vapor in different locations in the tropics. We did this in Puerto Escondido, Mexico in July 1998, near Kwajalein Island in the Pacific in 1999 as part of a TRMM summer field program and in 2001 in Key West, Florida as part of the CAMEX 4 summer field program. Our isotopic studies along with our earlier tropical cyclone studies showed that the low isotopic ratios in water vapor induced by exposure to rains the storms persisted for 48 hours often far away from the original storm site. We also noted that positive isotopic spikes were introduced into atmospheric water vapor if winds were high and extensive sea spray was present. These findings have a significant impact on the interpretation of the stable isotope studies of tropical ice cores found in the high mountain regions of the tropics. The assumption made in interpreting the ice core record is that the source water vapor evaporated from the sea surface is in near isotopic equilibrium with the seawater and undergoes a decrease during its transport that reflects the change in temperature from the sea surface to the site of the ice core. Because an additional isotopic depletion occurs at the sea surface source area that depends on the intensity, duration and size of the tropical rain system the isotopic variations found in the ice cores must take into account changes in past storm activity in the tropics. These systems must be an important source of water vapor to the ice cores because they charge the troposphere with water vapor to a far greater vertical height than evaporation in quiescent regions. Finally, an interest in increased heat transfer in thnterior of tropical cyclones resulting from greater amounts of sea spray is a topic of considerable interest to the research community. Increases in sea spray may be related to rapid changes in the intensity of hurricanes, a feature of hurricanes that currently is very poorly forecast. Project CBLAST of the Hurricane Research Division of NOAA is an active program that uses P3 research aircraft to evaluate this problem. An instrument has been designed and built at the University of Houston that will be placed on the P3 research aircraft during the 2004 hurricane season. It continuously measures the salt content of rain in hurricanes. Changes in the salt content of the rains should reflect the abundance of sea spray at the sea surface. In this way maps of sea spray intensity in hurricanes may be forthcoming. This should help computer modelers who simulate hurricanes to better understand the potential of changes in sea spray to change the intensity of hurricanes. The cost of designing, building and installing this instrument was borne largely by funding from this NASA grant. A list of presentations at national meetings and publications that were as the result of funding from this NASA grant are found in the report.
Document ID
20040076968
Acquisition Source
Goddard Space Flight Center
Document Type
Contractor or Grantee Report
Authors
Lawrence, James R.
(Houston Univ. TX, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2004
Subject Category
Meteorology And Climatology
Funding Number(s)
CONTRACT_GRANT: NAG5-7827
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available