NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Progress on the Plasmoid Thruster Experiment (PTX)A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic field (B(sub p) and B(sub t), respectively). An object with B(sub p)/B(sub t), much much more than 1 is called a Field Reverse Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The thruster operates by repetitively producing plasmoids that are accelerated and ejected at high velocity. As this process is inductive, there are no electrodes. Also, the magnetic structure of the plasmoid should suppress thermal and mass losses to the wall, and improve detachment of the plasma exhaust from the thruster. This concept should be capable of producing an Isp in the range of 5,000 - 10,000 s with thrust densities of order 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable into the MW range. In PTX, the plasmoid is formed inside of a single turn conical theta-pinch coil (17.58 cone angle). The coil is driven by a 640 nF, 35 kV capacitor bank, which rings at a frequency of 500 kHz. Previous experiments on PTX were conducted with a static-fill of propellant gas (6% H2 in He), and demonstrated reliable ionization over a pressure range of 40 - 200 mTorr. We are now adding a fast gas-puff valve to load the propellant, and a ringing pre-ionization circuit (f = 5 Mhz) to better control the plasmoid formation. An alternate coil (8.58 cone angle) will also be used, so as to investigate the effect of coil shape on performance. In addition, a variety of propellants will be used, including hydrogen, nitrogen, and argon. The plasmoid mass and velocity will be measured with a variety of diagnostics, including external B-dot probes and flux loops, a high-speed framing camera, and a HeNe laser interferometer. Internal B-dot probes and a quadruple Langmuir probe will provide additional measurements of the plasmoid shape and structure, as well as density, and will be described in a companion paper. The experimental results will be compared to calculations made using a 0-D coil-gun model and also a 2-D time dependent MHD code.
Document ID
20040086054
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Martin, Adam
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Eskridge, Richard
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Fimognari, Peter
(Alabama Univ. Huntsville, AL, United States)
Koelfgen, Syri J.
(Alabama Univ. Huntsville, AL, United States)
Lee, Mike
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2004
Subject Category
Physics (General)
Meeting Information
Meeting: 40th AIAA Joint Propulsion Conference
Location: Fort Lauderdale, FL
Country: United States
Start Date: July 11, 2004
End Date: July 14, 2004
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available