NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflightAstronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts approximately 72 and 23 days before, and on landing day after the 16 day Neurolab (STS-90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre-, in- and post-flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (+/- S.E.M.) baseline heart rates and arterial pressures were similar among pre-, in- and post-flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post- than pre-flight (112 +/- 6 vs. 99 +/- 5 mmHg, P = 0.088). Contraction-induced rises in heart rate were similar pre-, in- and post-flight. MSNA was higher post-flight in all subjects before static handgrip (26 +/- 4 post- vs. 15 +/- 4 bursts min(-1) pre-flight, P = 0.017). Contraction-evoked peak MSNA responses were not different before, during, and after spaceflight (41 +/- 4, 38 +/- 5 and 46 +/- 6 bursts min(-1), all P > 0.05). MSNA during post-handgrip circulatory arrest was higher post- than pre- or in-flight (41 +/- 1 vs. 33 +/- 3 and 30 +/- 5 bursts min(-1), P = 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in-flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.
Document ID
20040088044
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Fu, Qi
(Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas 7232 Greenville Avenue, Suite 435, Dallas, TX 75231, United States)
Levine, Benjamin D.
Pawelczyk, James A.
Ertl, Andrew C.
Diedrich, Andre
Cox, James F.
Zuckerman, Julie H.
Ray, Chester A.
Smith, Michael L.
Iwase, Satoshi
Saito, Mitsuru
Sugiyama, Yoshiki
Mano, Tadaaki
Zhang, Rong
Iwasaki, Kenichi
Lane, Lynda D.
Buckey, Jay C Jr
Cooke, William H.
Robertson, Rose Marie
Baisch, Friedhelm J.
Blomqvist, C. Gunnar
Eckberg, Dwain L.
Robertson, David
Biaggioni, Italo
Date Acquired
August 21, 2013
Publication Date
October 15, 2002
Publication Information
Publication: The Journal of physiology
Volume: 544
Issue: Pt 2
ISSN: 0022-3751
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Neuroscience
manned
NASA Experiment Number 9301294
short duration
NASA Discipline Cardiopulmonary
Flight Experiment
Non-NASA Center
STS-90 Shuttle Project

Available Downloads

There are no available downloads for this record.
No Preview Available