NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Kinetics of chromatid break repair in G2-human fibroblasts exposed to low- and high-LET radiationsThe purpose of this study is to determine the kinetics of chromatid break rejoining following exposure to radiations of different quality. Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290 MeV/u), silicon (490 MeV/u) and iron (200 MeV/u, 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Prematurely condensed chromosomes were collected after several post-irradiation incubation times, ranging from 5 to 600 minutes, and the number of chromatid breaks and exchanges in G2 cells were scored. The relative biological effectiveness (RBE) for initial chromatid breaks per unit dose showed LET dependency having a peak at 55 keV/micrometers silicon (2.4) or 80 keV/micrometers carbon particles (2.4) and then decreased with increasing LET. The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components. Chromatid breaks decreased rapidly after exposure, and then continued to decrease at a slower rate. The rejoining kinetics was similar for exposure to each type of radiation, although the rate of unrejoined breaks was higher for high-LET radiation. Chromatid exchanges were also formed quickly.
Document ID
20040088536
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Kawata, T.
(NASA Johnson Space Center Houston TX United States)
Durante, M.
George, K.
Furusawa, Y.
Gotoh, E.
Takai, N.
Wu, H.
Cucinotta, F. A.
Date Acquired
August 21, 2013
Publication Date
January 1, 2001
Publication Information
Publication: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Volume: 17 Suppl 1
ISSN: 1120-1797
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Center JSC
NASA Discipline Radiation Health

Available Downloads

There are no available downloads for this record.
No Preview Available