NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, WyomingMolecular methods and comparisons of fruiting patterns (i.e., presence or absence of fungal fruiting bodies in different soil types) were used to determine ectomycorrhizal (EM) associates of Pinus contorta in soils associated with a thermal soil classified as ultra-acidic to extremely acidic (pH 2 to 4). EM were sampled by obtaining 36 soil cores from six paired plots (three cores each) of both thermal soils and forest soils directly adjacent to the thermal area. Fruiting bodies (mushrooms) were collected for molecular identification and to compare fruiting body (above-ground) diversity to below-ground diversity. Our results indicate (i) that there were significant decreases in both the level of EM infection (130 +/- 22 EM root tips/core in forest soil; 68 +/- 22 EM root tips/core in thermal soil) and EM fungal species richness (4.0 +/- 0.5 species/core in forest soil; 1.2 +/- 0.2 species/core in thermal soil) in soils associated with the thermal feature; (ii) that the EM mycota of thermal soils was comprised of a small set of dominant species and included very few rare species, while the EM mycota of forest soils contained a few dominant species and several rare EM fungal species; (iii) that Dermocybe phoenecius and a species of Inocybe, which was rare in forest soils, were the dominant EM fungal species in thermal soils; (iv) that other than the single Inocybe species, there was no overlap in the EM fungal communities of the forest and thermal soils; and (v) that the fungal species forming the majority of the above-ground fruiting structures in thermal soils (Pisolithus tinctorius, which is commonly used in remediation of acid soils) was not detected on a single EM root tip in either type of soil. Thus, P. tinctorius may have a different role in these thermal soils. Our results suggest that this species may not perform well in remediation of all acid soils and that factors such as pH, soil temperature, and soil chemistry may interact to influence EM fungal community structure. In addition, we identified at least one new species with potential for use in remediation of hot acidic soil.
Document ID
20040088621
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Cullings, K.
(NASA Ames Research Center Moffett Field CA United States)
Makhija, S.
Date Acquired
August 21, 2013
Publication Date
December 1, 2001
Publication Information
Publication: Applied and environmental microbiology
Volume: 67
Issue: 12
ISSN: 0099-2240
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available