NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Paleosols and the evolution of atmospheric oxygen: a critical reviewA number of investigators have used chemical profiles of paleosols to reconstruct the evolution of atmospheric oxygen levels during the course of Earth history (Holland, 1984, 1994; Kirkham and Roscoe, 1993; Ohmoto, 1996). Over the past decade Holland and his co-workers have examined reported paleosols from six localities that formed between 2.75 and 0.45 Ga. They have found that the chemical profiles of these paleosols are consistent with a dramatic change in atmospheric PO2 between 2.2 and 2.0 Ga from < or = 0.002 to > or = 0.03 atm (Holland, 1994). Ohmoto (1996) examined chemical data from twelve reported paleosols ranging in age from 2.9 to 1.8 Ga. He concluded that these chemical profiles indicate that atmospheric PO2 has not changed significantly during the past 3.0 Ga. We seek to resolve the conflict between these reconstructions through a broader examination of the paleosol literature, both to determine which reported paleosols can be definitively identified as such and to determine what these definite paleosols tell us about atmospheric evolution. We here review reports describing over 50 proposed paleosols, all but two are older than 1.7 Ga. Our review indicates that 15 of these reported paleosols can be definitively identified as ancient soils. The behavior of iron uring the formation of these 15 paleosols provides both qualitative and semiquantitative information about the evolution of the redox state of the atmosphere. Every definitely identified pre-2.44 Ga paleosol suffered significant Fe loss during weathering. This loss indicates that atmospheric PO2 was always less than about 5 x l0(-4) atm prior to 2.44 Ga. Analysis of the Hokkalampi paleosol (2.44-2.2 Ga) (Marmo, 1992) and the Ville Marie paleosol (2.38-2.215 Ga) (Rainbird, Nesbitt, and Donaldson, 1990) yield ambiguous results regarding atmospheric PO2. Loss of Fe during the weathering of the 2.245 to 2.203 Ga Hekpoort paleosol (Button, 1979) indicates that atmospheric PO2 was less than 8 x 10(-4) atm shortly before 2.2 Ga. The presence of red beds immediately overlying the Hokkalampi, Ville Marie, and Hekpoort paleosols suggests that by about 2.2 Ga there was an unquantified but substantial amount of oxygen in the atmosphere. Iron loss was negligible during formation of the 2.2 to 2.0 Ga Wolhaarkop (Holland and Beukes, 1990) and Drakenstein (Wiggering and Beukes, 1990) paleosols and during formation of all the later paleosols we previewed. Thus, atmospheric PO2 probably has been > or = 0.03 atm since sometime between 2.2 and 2.0 Ga.
Document ID
20040089032
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Rye, R.
(Harvard University, Department of Earth and Planetary Sciences Cambridge, Massachusetts 02138, United States)
Holland, H. D.
Date Acquired
August 21, 2013
Publication Date
October 1, 1998
Publication Information
Publication: American journal of science
Volume: 298
Issue: 8
ISSN: 0002-9599
Subject Category
Meteorology And Climatology
Funding Number(s)
CONTRACT_GRANT: NAG5-4174
CONTRACT_GRANT: NAGW-599
Distribution Limits
Public
Copyright
Other
Keywords
Review, Academic
Review
Non-NASA Center
NASA Discipline Exobiology

Available Downloads

There are no available downloads for this record.
No Preview Available