NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Signal transduction in T lymphocytes in microgravityMore than 120 experiments conducted in space in the last 15 years have shown that dramatic changes are occurring in several types of single cells during their exposure to microgravity. One focus of today's research on cells in space is on signal transduction, especially those steps involving the cytoskeleton and cell-cell interactions. Signal transduction is often altered in microgravity as well as in hypergravity. This leads to changes in cell proliferation, genetic expression and differentiation. Interesting examples are leukocytes, HeLa cells, epidermoid cells and osteoblastic cells. Signalling pathways were studied in T lymphocytes in microgravity by several investigators after the discovery that mitogenic activation in vitro is virtually nil at 0g. T cells are a good model to study signal transduction because three extracellular signals (mitogen, IL-1 and IL-2) are required for full activation, and two classical pathways (via proteins G and PKC) are activated within the cell. In addition, low molecular weight GTP-binding proteins (Ras and Rap) are interacting with the cytoskeleton. The data at 0g support the notion that the expression of IL-2 receptor is inhibited at 0g, while mitogen binding and the transmission of IL-1 by accessory cells occur normally. In addition, alterations of the cytoskeleton suggest that the interaction with Rap proteins is disturbed. Data obtained with phorbol esters indicate that the function of PKC is changed in microgravity. Similar conclusions are drawn from the results with epidermoid cells A431.
Document ID
20040089483
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Cogoli, A.
(Space Biology, ETH Technopark, Zurich, Switzerland)
Date Acquired
August 21, 2013
Publication Date
June 1, 1997
Publication Information
Publication: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology
Volume: 10
Issue: 2
ISSN: 1089-988X
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
short duration
Flight Experiment
Cosmos Project
manned
Non-NASA Center
Review
Review, Tutorial
NASA Discipline Regulatory Physiology
Sounding Rocket
unmanned
STS Shuttle Project

Available Downloads

There are no available downloads for this record.
No Preview Available