NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Calcium and signal transduction in plantsEnvironmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.
Document ID
20040089514
Acquisition Source
Kennedy Space Center
Document Type
Reprint (Version printed in journal)
Authors
Poovaiah, B. W.
(Washington State University Pullman)
Reddy, A. S.
Date Acquired
August 21, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Critical reviews in plant sciences
Volume: 12
Issue: 3
ISSN: 0735-2689
Subject Category
Life Sciences (General)
Funding Number(s)
CONTRACT_GRANT: NAG10-0061S
CONTRACT_GRANT: DCB-9104586
Distribution Limits
Public
Copyright
Other
Keywords
NASA Program Space Biology
Non-NASA Center
NASA Discipline Plant Biology
NASA Discipline Number 40-50
Review
Review, Academic

Available Downloads

There are no available downloads for this record.
No Preview Available