NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotylsSeven day old etiolated pea epicotyls were loaded symmetrically with 3H-indole 3-acetic acid (IAA) or 45Ca2+, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca2+ asymmetries, but substances known to interfere with normal Ca2+ transport (nitrendipine, nisoldipine, Bay K 8644, A 23187) do not significantly alter either IAA or Ca2+ asymmetries. These substances, however, are active in modifying both Ca2+ uptake and efflux through oat and pea leaf protoplast membranes. We conclude that the 45Ca2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca2+ movement secondary in gravitropism. We hypothesize that apoplastic Ca2+ changes during graviresponse because it is displaced by H+ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increases calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H+ efflux, increase Ca2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H+ efflux, has the reverse effect. We suggest that Ca2+ does not redistribute actively during gravitropism: the asymmetry arises because of its release from the wall adjacent to the region of high IAA concentration, proton secretion, and growth. Thus, the asymmetric distribution of Ca2+ appears to be a consequence of growth stimulation, not a critical step in the early phase of the graviresponse.
Document ID
20040089623
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Migliaccio, F.
(Yale University New Haven, Connecticut 06511-8112, United States)
Galston, A. W.
Date Acquired
August 21, 2013
Publication Date
January 1, 1987
Publication Information
Publication: Plant physiology
Volume: 85
ISSN: 0032-0889
Subject Category
Life Sciences (General)
Funding Number(s)
CONTRACT_GRANT: NSG-7290
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Number 40-10
NASA Discipline Plant Biology
Non-NASA Center
NASA Program Space Biology

Available Downloads

There are no available downloads for this record.
No Preview Available