NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Testing the PV-Theta Mapping Technique in a 3-D CTM Model SimulationMapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.
Document ID
20040105659
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Frith, Stacey M.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2004
Subject Category
Geophysics
Meeting Information
Meeting: International Quadrennial Ozone Symposium (QOS 2004)
Location: Kos
Country: Greece
Start Date: June 1, 2004
End Date: June 8, 2004
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available