NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Regulation of heat shock protein message in Jurkat cells cultured under serum-starved and gravity-altered conditionsAlthough our understanding of effects of space flight on human physiology has advanced significantly over the past four decades, the potential contribution of stress at the cellular and gene regulation level is not characterized. The objective of this ground-based study was to evaluate stress gene regulation in cells exposed to altered gravity and environmentally suboptimal conditions. We designed primers to detect message for both the constitutive and inducible forms of the heat shock protein, HSP-70. Applying the reverse transcriptase-polymerase chain reaction (RT-PCR), we probed for HSP-70 message in human acute T-cell leukemia cells, Jurkat, subjected to three types of environmental stressors: (1) altered gravity achieved by centrifugation (hypergravity) and randomization of the gravity vector in rotating bioreactors, (2) serum starvation by culture in medium containing 0.05% serum, and (3) temperature elevation (42 degrees C). Temperature elevation, as the positive control, significantly increased HSP-70 message, while centrifugation and culture in rotating bioreactors did not upregulate heat shock gene expression. We found a fourfold increase in heat shock message in serum-starved cells. Message for the housekeeping genes, actin and cyclophilin, were constant and comparable to unstressed controls for all treatments. We conclude that gravitational perturbations incurred by centrifugal forces, exceeding those characteristic of a Space Shuttle launch (3g), and culture in rotating bioreactors do not upregulate HSP-70 gene expression. In addition, we found RT-PCR useful for evaluating stress in cultured cells. Copyright 2000 Wiley-Liss, Inc.
Document ID
20040141664
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Lewis, M. L.
(University of Alabama Huntsville, Alabama 35899, United States)
Hughes-Fulford, M.
Date Acquired
August 22, 2013
Publication Date
February 1, 2000
Publication Information
Publication: Journal of cellular biochemistry
Volume: 77
Issue: 1
ISSN: 0730-2312
Subject Category
Aerospace Medicine
Distribution Limits
Public
Copyright
Other
Keywords
NASA Program Fundamental Space Biology
NASA Discipline Cell Biology
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available