NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Relative reactivity of ribosyl 2'-OH vs. 3'-OH in concentrated aqueous solutions of phosphoimidazolide activated nucleotidesPhosphoimidazolide activated ribomononucleotides (*pN, see structure) are useful substrates for the non-enzymatic synthesis of oligonucleotides. In the presence of metal ions, aqueous solutions of *pN yield primarily the two internucleotide-linked (pN2' pN and pN3' pN) and the pyrophosphate-linked (N5' ppN) dimers. Small amounts of cyclic dimers and higher oligomers are also produced. In this study the relative reactivity of 2'-OH vs. 3'-OH was determined from the ratio of the yields of pN2' pN vs. pN3' pN. Experiments were performed at 23 degrees C in the range 7.2 < or = pH < or = 8.4 with substrates that differ in nucleobase (guanosine (G), cytidine (C), uridine (U), and adenosine (A)) and leaving group (imidazole (Im), 2-methylimidazole (2-MeIm) and 2,4-dimethylimidazole (2,4-diMeIm)). Two metal ions (Mg2+ or Mn2+) were employed as catalysts. The conditions used here, i.e. a substrate concentration in the range 0.1 M to 1.0 M and metal ion concentration in the range 0.05 M to 0.2 M, favor base-stacking interactions. The ratio pN2' pN: pN3' pN = 2'-5': 3'-5' was found independent of nucleobase and typically varied between 2 to 3 indicating that the 2'-OH is about 2 to 3 times more reactive than the 3'-OH. *pN with Im, compared to 2-MeIm and 2,4-diMeIm leaving group, produce lower yields of internucleotide linked dimers, and a higher pN2' pN: pN3' pN ratio. Trends in the data, observed with all three leaving groups, suggest an increase in pN2' pN: pN3' pN ratio with decreasing substrate concentration (up to 5.47 with 0.051 M ImpG). The observations are in accord with earlier studies reporting a relative reactivity 2'-5': 3'-5' = 6 to 9 obtained with Im as the leaving group, in dilute nucleotide solutions and under conditions that disfavor stacking. It is speculated that the concentration induced change in the relative reactivity is the result of self-association via base-stacking that enhances selectively the proximity of the 3'-OH of one molecule to the reactive P-N bond of an other molecule. The implication of these conclusions for oligomerization/ligation reactions is discussed.
Document ID
20040141763
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Kanavarioti, A.
(University of California Santa Cruz 95064, United States)
Lee, L. F.
Gangopadhyay, S.
Date Acquired
August 22, 2013
Publication Date
October 1, 1999
Publication Information
Publication: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life
Volume: 29
Issue: 5
ISSN: 0169-6149
Subject Category
Exobiology
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Exobiology
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available