NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotationSingle-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.
Document ID
20040141903
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Gdowski, G. T.
(University of Chicago Chicago, Illinois 60637, United States)
McCrea, R. A.
Peterson, B. W.
Date Acquired
August 22, 2013
Publication Date
July 1, 1999
Publication Information
Publication: Journal of neurophysiology
Volume: 82
Issue: 1
ISSN: 0022-3077
Subject Category
Life Sciences (General)
Funding Number(s)
CONTRACT_GRANT: R01-EY-08-041
CONTRACT_GRANT: DC-02072
Distribution Limits
Public
Copyright
Other
Keywords
Non-NASA Center
NASA Discipline Neuroscience

Available Downloads

There are no available downloads for this record.
No Preview Available