NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
NASA GEOS-3/TRMM Re-analysis: Capturing Observed Tropical Rainfall Variability in Global Analysis for Climate ResearchUnderstanding climate variability over a wide range of space-time scales requires a comprehensive description of the earth system. Global analyses produced by a fixed assimilation system (i.e., re-analyses) - as their quality continues to improve - have the potential of providing a vital tool for meeting this challenge. But at the present time, the usefulness of re-analyses is limited by uncertainties in such basic fields as clouds, precipitation, and evaporation - especially in the tropics, where observations are relatively sparse. Analyses of the tropics have long been shown to be sensitive to. the treatment of cloud precipitation processes, which remains a major source of uncertainty in current models. Yet, for many climate studies it is crucial that analyses can accurately reproduce the observed rainfall intensity and variability since a small error of 1 mm/d in surface rain translates into an error of approx. 30 W/sq m in energy (latent heat) flux. Currently, discrepancies between the observed and analyzed monthly-mean rain rates averaged to 100 km x 100 km resolution can exceed 4 mm/d (or 120 W/sq m ), compared to uncertainties in surface radiative fluxes of approx. 10-20 W/sq m . Improving precipitation in analyses would reduce a major source of uncertainty in the global energy budget. Uncertainties in tropical precipitation have also been a major impediment in understanding how the tropics interact with other regions, including the remote response to El Nino/Southern Oscillation (ENSO) variability on interannual time scales, the influence of Madden-Julian Oscillation (MJO) and monsoons on intraseasonal time scales. A global analysis that can replicate the observed precipitation variability together with physically consistent estimates of other atmospheric variables provides the key to breaking this roadblock. NASA Goddard Space Flight Center has been exploring the use of satellite-based microwave rainfall measurements in improving global analyses and has recently produced a multi-year, 1 x 1 TRMM re-analysis , which assimilates 6-hourly TMI and SSM/I surface rain rates over tropical oceans using a ID variational continuous assimilation (VCA) procedure in the GEOS-3 global data assimilation system. The analysis period extends from 1 November 1997 through 3 1 December 2002. The goal is to produce a multi-year global analysis that is dynamically consistent with available tropical precipitation observations for the community to assess its utility in climate applications and identify areas for further improvements. A distinct feature of the GEOS-3RRMh4 re-analysis is that its precipitation analysis is not derived from a short-term forecast (as done in most operational systems) but is given by a time- continuous model integration constrained by precipitation observations within a 6-h analysis window, while the wind, temperature, and pressure fields are allowed to directly respond to the improved precipitation and associated latent heating structures within the same analysis window. In this talk, I will assess the impact VCA precipitation assimilation on analyses of climate signals ranging from a few weeks to interannual time scales and compare results against other operational and reanalysis products.
Document ID
20040171212
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Hou, Arthur Y.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 22, 2013
Publication Date
January 1, 2004
Subject Category
Meteorology And Climatology
Meeting Information
Meeting: CGMS IPWG 2nd International Precipitation Working Group Workshop
Location: Monterey, CA
Country: United States
Start Date: October 25, 2004
End Date: October 28, 2004
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available