NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model SimulationsCloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.
Document ID
20040172171
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Tao, Wei-Kuo
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Li, X.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Khain, A.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Simpson, S.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 22, 2013
Publication Date
January 1, 2004
Subject Category
Meteorology And Climatology
Meeting Information
Meeting: AGU Fall Session
Location: San Francisco, CA
Country: United States
Start Date: December 13, 2004
End Date: December 17, 2004
Sponsors: American Geophysical Union
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available