NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Combined influences of gravitoinertial force level and visual field pitch on visually perceived eye levelPsychophysical measurements of the level at which observers set a small visual target so as to appear at eye level (VPEL) were made on 13 subjects in 1.0 g and 1.5 g environments in the Graybiel Laboratory rotating room while they viewed a pitched visual field or while in total darkness. The gravitoinertial force was parallel to the z-axis of the head and body during the measurements. The visual field consisted of two 58 degrees high, luminous, pitched-from-vertical, bilaterally symmetric, parallel lines, viewed in otherwise total darkness. The lines were horizontally separated by 53 degrees and presented at each of 7 angles of pitch ranging from 30 degrees with the top of the visual field turned away from the subject (top backward) to 30 degrees with the top turned toward the subject (top forward). At 1.5 g, VPEL changed linearly with the pitch of the 2-line stimulus and was depressed with top backward pitch and elevated with top forward pitch as had been reported previously at 1.0 g (1,2); however, the slopes of the VPEL-vs-pitch functions at 1.0 g and 1.5 g were indistinguishable. As reported previously also (3,4), the VPEL in darkness was considerably lower at 1.5 g than at 1.0 g; however, although the y-intercept of the VPEL-vs-pitch function in the presence of the 2-line visual field (visual field erect) was also lower at 1.5 g than at 1.0 g as it was in darkness, the G-related difference was significantly attenuated by the presence of the visual field. The quantitative characteristics of the results are consistent with a model in which VPEL is treated as a consequence of an algebraic weighted average or a vector sum of visual and nonvisual influences although the two combining rules lead to fits that are equally good.
Document ID
20040172873
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
DiZio, P.
(Brandeis University Waltham, Massachusetts 02254-9110, United States)
Li, W.
Lackner, J. R.
Matin, L.
Date Acquired
August 22, 2013
Publication Date
September 1, 1997
Publication Information
Publication: Journal of vestibular research : equilibrium & orientation
Volume: 7
Issue: 5
ISSN: 0957-4271
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
Non-NASA Center
NASA Discipline Neuroscience

Available Downloads

There are no available downloads for this record.
No Preview Available