NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm1. Reaching movements made in a rotating room generate Coriolis forces that are directly proportional to the cross product of the room's angular velocity and the arm's linear velocity. Such Coriolis forces are inertial forces not involving mechanical contact with the arm. 2. We measured the trajectories of arm movements made in darkness to a visual target that was extinguished at the onset of each reach. Prerotation subjects pointed with both the right and left arms in alternating sets of eight movements. During rotation at 10 rpm, the subjects reached only with the right arm. Postrotation, the subjects pointed with the left and right arms, starting with the left, in alternating sets of eight movements. 3. The initial perrotary reaching movements of the right arm were highly deviated both in movement path and endpoint relative to the prerotation reaches of the right arm. With additional movements, subjects rapidly regained straight movement paths and accurate endpoints despite the absence of visual or tactile feedback about reaching accuracy. The initial postrotation reaches of the left arm followed straight paths to the wrong endpoint. The initial postrotation reaches of the right arm had paths with mirror image curvature to the initial perrotation reaches of the right arm but went to the correct endpoint. 4. These observations are inconsistent with current equilibrium point models of movement control. Such theories predict accurate reaches under our experimental conditions. Our observations further show independent implementation of movement and posture, as evidenced by transfer of endpoint adaptation to the nonexposed arm without transfer of path adaptation. Endpoint control may occur at a relatively central stage that represents general constraints such as gravitoinertial force background or egocentric direction relative to both arms, and control of path may occur at a more peripheral stage that represents moments of inertia and muscle dynamics unique to each limb. 5. Endpoint and path adaptation occur despite the absence both of mechanical contact cues about the perturbing force and visual or tactile cues about movement accuracy. These findings point to the importance of muscle spindle signals, monitoring of motor commands, and possibly joint and tendon receptors in a detailed trajectory monitoring process. Muscle spindle primary and secondary afferent signals may differentially influence adaptation of movement shape and endpoint, respectively.
Document ID
20050000127
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Dizio, P.
(Brandeis University Waltham, Massachusetts 02254-9110, United States)
Lackner, J. R.
Date Acquired
August 22, 2013
Publication Date
October 1, 1995
Publication Information
Publication: Journal of neurophysiology
Volume: 74
Issue: 4
ISSN: 0022-3077
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
Non-NASA Center
NASA Discipline Neuroscience

Available Downloads

There are no available downloads for this record.
No Preview Available