NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frogThe concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the vertebrate neuromuscular junction. The major differences between these two synapses are the neurotransmitters and the higher resting release rate and higher sensitivity of release to increased K+ concentrations of the hair cells over that of motor nerve terminals. These differences reflect the functional roles of the two synapses: the motor nerve terminal response in an all-or-nothing signal consequent from action potential invasion, while the hair cell releases transmitter in a graded fashion, proportionate to the extent of stereocilial deflection. Despite these differences between the two junctions, the similar actions of these elemental cations upon synaptic function at each implies that these ions may participate similarly in the operations of other synapses, independent of the neurotransmitter type.(ABSTRACT TRUNCATED AT 400 WORDS).
Document ID
20050000135
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Cochran, S. L.
(University of Texas Medical Branch at Galveston 77555-1063 United States)
Date Acquired
August 22, 2013
Publication Date
October 1, 1995
Publication Information
Publication: Neuroscience
Volume: 68
Issue: 4
ISSN: 0306-4522
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Neuroscience
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available