NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tiltModel simulations of the squirrel monkey vestibulo-ocular reflex (VOR) are presented for two motion paradigms: constant velocity eccentric rotation and roll tilt about a naso-occipital axis. The model represents the implementation of three hypotheses: the "internal model" hypothesis, the "gravito-inertial force (GIF) resolution" hypothesis, and the "compensatory VOR" hypothesis. The internal model hypothesis is based on the idea that the nervous system knows the dynamics of the sensory systems and implements this knowledge as an internal dynamic model. The GIF resolution hypothesis is based on the idea that the nervous system knows that gravity minus linear acceleration equals GIF and implements this knowledge by resolving the otolith measurement of GIF into central estimates of gravity and linear acceleration, such that the central estimate of gravity minus the central estimate of acceleration equals the otolith measurement of GIF. The compensatory VOR hypothesis is based on the idea that the VOR compensates for the central estimates of angular velocity and linear velocity, which sum in a near-linear manner. During constant velocity eccentric rotation, the model correctly predicts that: (1) the peak horizontal response is greater while "facing-motion" than with "back-to-motion"; (2) the axis of eye rotation shifts toward alignment with GIF; and (3) a continuous vertical response, slow phase downward, exists prior to deceleration. The model also correctly predicts that a torsional response during the roll rotation is the only velocity response observed during roll rotations about a naso-occipital axis. The success of this model in predicting the observed experimental responses suggests that the model captures the essence of the complex sensory interactions engendered by eccentric rotation and roll tilt.
Document ID
20050000258
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Merfeld, D. M.
(Massachusetts Institute of Technology Cambridge 02139, United States)
Paloski, W. H.
Date Acquired
August 22, 2013
Publication Date
January 1, 1995
Publication Information
Publication: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale
Volume: 106
Issue: 1
ISSN: 0014-4819
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Neuroscience
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available