NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Top-of-Atmosphere Albedo Estimation from Angular Distribution Models using Scene Identification from Satellite Cloud Property RetrievalsThe next generation of Earth radiation budget satellite instruments will routinely merge estimates of global top-of-atmosphere radiative fluxes with cloud properties. This information will offer many new opportunities for validating radiative transfer models and cloud parameterizations in climate models. In this study, five months of POLarization and Directionality of the Earth's Reflectances (POLDER) 670 nm radiance measurements are considered in order to examine how satellite cloud property retrievals can be used to define empirical Angular Distribution Models (ADMs) for estimating top-of-atmosphere (TOA) albedo. ADMs are defined for 19 scene types defined by satellite retrievals of cloud fraction and cloud optical depth. Two approaches are used to define the ADM scene types: The first assumes there are no biases in the retrieved cloud properties and defines ADMs for fixed discrete intervals of cloud fraction and cloud optical depth (fixed-tau approach). The second approach involves the same cloud fraction intervals, but uses percentile intervals of cloud optical depth instead (percentile-tau approach). Albedos generated using these methods are compared with albedos inferred directly from the mean observed reflectance field. Albedos based on ADMs that assume cloud properties are unbiased (fixed-tau approach) show a strong systematic dependence on viewing geometry. This dependence becomes more pronounced with increasing solar zenith angle, reaching approximately equals 12% (relative) between near-nadir and oblique viewing zenith angles for solar zenith angles between 60 deg and 70 deg. The cause for this bias is shown to be due to biases in the cloud optical depth retrievals. In contrast, albedos based on ADMs built using percentile intervals of cloud optical depth (percentile-tau approach) show very little viewing zenith angle dependence and are in good agreement with albedos obtained by direct integration of the mean observed reflectance field (less than 1% relative error). When the ADMs are applied separately to populations consisting of only liquid water and ice clouds, significant biases in albedo with viewing geometry are observed (particularly at low sun elevations), highlighting the need to account for cloud phase both in cloud optical depth retrievals and in defining ADM scene types. ADM-derived monthly mean albedos determined for all 5 deg x 5 deg latitude/longitude regions over ocean are in good agreement (regional RMS relative errors less than 2%) with those obtained by direct integration when ADM albedos inferred from specific angular bins are averaged together. Albedos inferred from near-nadir and oblique viewing zenith angles are the least accurate, with regional RMS errors reaching approximately 5-10% (relative). Compared to an earlier study involving ERBE ADMs, regional mean albedos based on the 19 scene types considered here show a factor of 4 reduction in bias error and a factor of 3 reduction in RMS error.
Document ID
20050041650
Acquisition Source
Headquarters
Document Type
Reprint (Version printed in journal)
Authors
Loeb, N. G.
Parol, F.
Buriez, J.-C.
Vanbauce, C.
Date Acquired
August 22, 2013
Publication Date
January 1, 2000
Publication Information
Publication: J. Climate
Volume: 13
Subject Category
Meteorology And Climatology
Funding Number(s)
CONTRACT_GRANT: NAG1-2318
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available