NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS ObservationsThe direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March, 2000 to December, 2003) of merged CERES and MODIS Terra global measurements over ocean. This analysis includes the contribution from clear regions in both clear and partly cloudy CERES footprints. MODIS-CERES narrow-to-broadband regressions are developed to convert clear-sky MODIS narrowband radiances to broadband SW radiances, and CERES clear-sky Angular Distribution Models (ADMs) are used to estimate the corresponding TOA radiative fluxes needed to determine the DREA. Clear-sky MODIS pixels are identified using two independent cloud masks: (i) the NOAA-NESDIS algorithm used for inferring aerosol properties from MODIS on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product (NOAA-SSF); and (ii) the standard algorithm used by the MODIS aerosol group to produce the MODO4 product (MODO4). Over global oceans, direct radiative cooling by aerosols for clear scenes identified from MODO4 is estimated to be 5.5 W m-2, compared to 3.8 W m-2 for clear scenes from NOAA-SSF. Regionally, differences are largest in areas affected by dust aerosol, such as oceanic regions adjacent to the Saharan and Saudi Arabian deserts, and in northern Pacific Ocean regions influenced by dust transported from Asia. The net total-sky (clear and cloudy) DREA is negative (cooling) and is estimated to be -2.0 W m-2 from MOD04, and -1.6 W m-2 from NOAA-SSF. The DREA is shown to have pronounced seasonal cycles in the Northern Hemisphere and large year-to-year fluctuations near deserts. However, no systematic trend in deseasonalized anomalies of the DREA is observed over the 46-month time series considered.
Document ID
20050041672
Acquisition Source
Headquarters
Document Type
Preprint (Draft being sent to journal)
Authors
Loeb, N. G.
Smith, N. M.
Date Acquired
August 22, 2013
Publication Date
January 1, 2004
Subject Category
Meteorology And Climatology
Funding Number(s)
CONTRACT_GRANT: NAG1-2318
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available