NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Eta Carinae: What We have learned recently with HST/STIS, VLT/UVES and VLTI: What We Might Learn with VLT/VLTI across the 2008/9 MinimumEta Carinae, the LBV that we have learned to love and hate, has revealed many clues of its character over the past seven years by studies with HST and VLT. Based upon X-Ray, optical and IR observations, Eta Carinae is convincingly a massive binary system that uniquely has major nebular ejecta that are connected with historical outbursts. We have successhlly followed the stellar and nebular changes over the 5.5 year cycle, especially with STIS and RXTE, and across the spectroscopic minimum in 2003.5 with STIS, CHANDRA, RXTE, FUSE, and VLT/UVES. The HST/STIS high spatial resolution, combined with appropriate spectral resolving powers from 1150 to 10300 A, has revealed much about the Central Source and especially the spatially resolved extended stellar atmosphere and the ejecta, known as the Homunculus. Indeed the neutral, dusty outer Homunculus, ejected in the 1840s, envelops the newly discovered ionized Little Homunculus, ejected in the 1890s. In line of sight, multiple hot clumps, both ionized and neutral, are seen in absorption and provide much information on the physical conditions of these massive ejecta. Against the nebular-scattered starlight, wind and nebular absorptions provide views at different angles from line of sight. The VLT/UVES studies from 2002 through 2004 provided very important time-sampled spectra of both the star as seen directly and as seen by the SE lobe viewing the polar region of the star. The VLTI 2.2 micron measures of the central source are consistent with a prolate spheroid with its axis extending along the axis of the Homunculus. This is consistent with the noticeably larger wind mass and higher terminal velocity along the axis of the Homunculus compared to that measured in line of sight at about 45 degrees from the polar axes. We understand the system to be a massive primary with an O or WR companion in a very highly elliptical orbit. The spectroscopic minimum occurs during periastron, when the greatly extended primary atmosphere and wind bottles up the ionizing uv radiation of the companion star. This transient drop in uv photons leads to recombination of much of the wind structure and of the nearby ejecta. Doubly-ionized elements (iron, neon, argon, vanadium) recombine to singly ionized forms and extended structures on the scales of below 0.03 arcseconds to an arcsecond change, appear, or disappear. With the loss of the STIS on HST, ground-based observations, especially with high spatial-resolution facilities, including the VLT and VLTI will be key to further studies across the minimum centered on 2009.0. Now is the time to plan for these studies.
Document ID
20050123857
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Gull, Theodore R.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 22, 2013
Publication Date
January 1, 2005
Subject Category
Astronomy
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available