NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the components may interfere with one another. By working with the electrical engineer who is designing the circuit, the specific design requirements for the MPDU were determined and used as guidelines. Space is limited due to the size of the mounting plate therefore each component must be strategically placed. Since the MPDU is being designed to fit into a simulated model of the spacecraft systems on the JIMO, components must be positioned where they are easily accessible to be wired to the other onboard systems. Mechanical and electrical requirements provided equally important limits which are combined to produce the best possible design of the MPDU.
Document ID
20050186827
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Papa, Melissa R.
(Pennsylvania State Univ. PA, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2004
Publication Information
Publication: Research Symposium I
Subject Category
Electronics And Electrical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available