NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
PV Technology for Low Intensity, Low Temperature (LILT) ApplicationsAs a result of the recent NASA emphasis on smaller, lower cost space missions, PV is now being considered for a number of missions operating at solar distances of 3 AU or greater. In the past, many of these missions would utilize an RTG (radioisotope thermoelectric generator). Historically, silicon solar cell behavior at these distances has been compromised by a number of mechanisms including shunting, nonohmic back contacts, and the 'broken knee' curve shape. The former two can usually be neglected for modern silicon cells, but the latter has not been eliminated. This problem has been identified with localized diffusion at the top contact/silicon interface which leads to structural changes at the local junction. This is believed to create a resistive metal-semiconductor-like (MSL) interface in parallel with the junction which results in the characteristic forms of the LILT (low intensity, low temperature) 'broken knee'. This paper discusses a TaSiN contact barrier that will prevent the MSL structure in the junction.
Document ID
20060038052
Acquisition Source
Jet Propulsion Laboratory
Document Type
Preprint (Draft being sent to journal)
External Source(s)
Authors
Stella, Paul M.
Pool, Frederick S.
Nicolet, Marc A.
Iles, Peter A.
Date Acquired
August 23, 2013
Publication Date
December 5, 1994
Subject Category
Energy Production And Conversion
Distribution Limits
Public
Copyright
Other
Keywords
spacecraft power LILT low temperature low intensity RTGs
solar cells photovoltaic PV semiconductor silicon broken knee space missions

Available Downloads

There are no available downloads for this record.
No Preview Available