NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Comets, Asteroids, Meteorites, and the Origin of the BiosphereDuring the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic photoautotrophs and chemolithotrophs such as the motile filamentous cyanobacteria (e.g., Calothrix, Oscillatoria, Phormidium, and Spirulina) that grow in geothermal springs and geysers of Earth at temperatures ranging fiom 320K to 345K and are also found growing in cold polar desert soils. The mineralized remains of morphotypes of all of these cyanobacteria have also been found in the Orgueil CI1 and the Murchison CN2 carbonaceous meteorites that may derive from cometary parent bodies. Observational results that support the hypothesis that liquid water can in active regions just beneath the surface of comets and that comets, carbonaceous meteorites, and asteroids may have played a significant role in the origin and evolution of the Biosphere and in the distribution of microbial life throughout the Solar System.
Document ID
20070002637
Acquisition Source
Marshall Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Hoover, Richard B.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2006
Publication Information
Publication: Proceedings of SPIE: Instruments, Methods, and Missions for Astrobiology IX Conference
Volume: 6309
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
SPIE Paper 6309-18
Meeting Information
Meeting: Instruments, Methods, and Missions for Astrobiology IX
Location: San Diego, CA
Country: United States
Start Date: August 14, 2006
End Date: August 15, 2006
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available