NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Space-Based Near-Infrared CO2 Measurements: Testing the Orbiting Carbon Observatory Retrieval Algorithm and Validation Concept Using SCIAMACHY Observations over Park Falls, WisconsinSpace-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 (XCO2) with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (approx.1000 x 1000 sq km and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve XCO2 and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 mm and the 1.58 mm CO2 band for Park Falls,Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS XCO2 retrievals of approx.3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY XCO2 retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS XCO2 retrievals. We compared the seasonal cycle of XCO2 at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.
Document ID
20070032969
Acquisition Source
Jet Propulsion Laboratory
Document Type
Reprint (Version printed in journal)
Authors
Bosch, H.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Toon, G. C.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Sen, B.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Washenfelder, R. A.
(California Inst. of Tech. Pasadena, CA, United States)
Wennberg, P. O.
(California Inst. of Tech. Pasadena, CA, United States)
Buchwitz, M.
(Bremen Univ. Germany)
deBeek, R.
(Bremen Univ. Germany)
Burrows, J. P.
(Bremen Univ. Germany)
Crisp, D.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Christi, M.
(Colorado State Univ. Fort Collins, CO, United States)
Connor, B. J.
(National Inst. of Water and Atmospheric Research Lauder, New Zealand)
Natraj, V.
(California Inst. of Tech. Pasadena, CA, United States)
Yung, Y. L.
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 23, 2013
Publication Date
December 6, 2006
Publication Information
Publication: Journal Of Geophysical Research
Publisher: American Geophysical Union
Volume: 111
ISSN: 0148-0227
Subject Category
Space Sciences (General)
Funding Number(s)
CONTRACT_GRANT: DLR/BMBF-50EE0027
Distribution Limits
Public
Copyright
Other
Keywords
carbon dioxide
satellite remote sensing
carbon cycle
near-infrared measurements

Available Downloads

There are no available downloads for this record.
No Preview Available