NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Kinetic and Product Study of the Cl + HO2 ReactionAbsolute rate data and product branching ratios for the reactions Cl + HO2 to HCl + O2 (k1a) and Cl + HO2 to OH + ClO (k1b) have been measured from 226 to 336 K at a total pressure of 1 Torr of helium using the discharge flow resonance fluorescence technique coupled with infrared diode laser spectroscopy. For kinetic measurements, pseudo-first-order conditions were used with both reagents in excess in separate experiments. HO2 was produced by two methods: through the termolecular reaction of H atoms with O2 and also by the reaction of F atoms with H2O2. Cl atoms were produced by a microwave discharge of Cl2 in He. HO2 radicals were converted to OH radicals prior to detection by resonance fluorescence at 308 nm. Cl atoms were detected directly at 138 nm also by resonance fluorescence. Measurement of the consumption of HO2 in excess Cl yielded k1a and measurement of the consumption of Cl in excess HO2 yielded the total rate coefficient, k1. Values of k1a and k1 derived from kinetic experiments expressed in Arrhenius form are (1.6 +/- 0.2) x 10-11 exp[(249 +/- 34)/T] and (2.8 +/- 0.1) x 10-11 exp[(123 +/- 15)/T] cm3 molecule-1 s-1, respectively. As the expression for k1 is only weakly temperature dependent, we report a temperature-independent value of k1 = (4.5 +/- 0.4) x 10-11 cm3 molecule-1 s-1. Additionally, an Arrhenius expression for k1b can also be derived: k1b = (7.7 +/- 0.8) x 10-11 exp[-(708 +/- 29)/T] cm3 molecule-1 s-1. These expressions for k1a and k1b are valid for 226 K T 336 and 256 K T 296 K, respectively. The cited errors are at the level of a single standard deviation. For the product measurements, an excess of Cl was added to known concentrations of HO2 and the reaction was allowed to reach completion. HCl product concentrations were determined by IR absorption yielding the ratio k1a/k1 over the temperature range 236 K T 296 K. OH product concentrations were determined by resonance fluorescence giving rise to the ratio k1b/k1 over the temperature range 226 K T 336 K. Both of these ratios were subsequently converted to absolute numbers. Values of k1a and k1b from the product experiments expressed in Arrhenius form are (1.5 +/- 0.1) x 10-11 exp[(222 +/- 17)/T] and (10.6 +/- 1.5) x 10-11 exp[-(733 +/- 41)/T] cm3 molecule-1 s-1, respectively. These expressions for k1a and k1b are valid for 256 K T 296 and 226 K T 336 K, respectively. A combination of the kinetic and product data results in the following Arrhenius expressions for k1a and k1b of (1.4 +/- 0.3) x 10-11 exp[(269 +/- 58)/T] and (12.7 +/- 4.1) x 10-11 exp[-(801 +/- 94)/T] cm3 molecule-1 s-1, respectively. Numerical simulations were used to check for interferences from secondary chemistry in both the kinetic and product experiments and also to quantify the losses incurred during the conversion process HO2 to OH for detection purposes.
Document ID
20070034786
Acquisition Source
Jet Propulsion Laboratory
Document Type
Reprint (Version printed in journal)
Authors
Hickson, Kevin M.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Keyser, Leon F.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
June 20, 2005
Publication Information
Publication: Journal of Physical Chemistry A
Publisher: American Chemical Society
Volume: 109
Issue: 31
Subject Category
Chemistry And Materials (General)
Distribution Limits
Public
Copyright
Other
Keywords
rate constants
kinetics of reaction
phtolysis
hydroperoxy radical
total rate coefficient
titration
reaction
Chlorine

Available Downloads

There are no available downloads for this record.
No Preview Available